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ABSTRACT
The organization of interphase chromosomes in chromosome territories (CTs) was first proposed more than one hundred years ago. The
introduction of increasingly sophisticated microscopic and molecular techniques, now provide complementary strategies for studying CTs in
greater depth than ever before. Here we provide an overview of these strategies and how they are being used to elucidate CT interactions and
the role of these dynamically regulated, nuclear-structure building blocks in directly supporting nuclear function in a physiologically
responsive manner. J. Cell. Biochem. 117: 9–19, 2016. © 2015 Wiley Periodicals, Inc.
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Genomic organization is coordinated by nuclear processes that
include DNA replication, chromatin remodeling, RNA tran-

scription and splicing. In the disease state, the frequent dysfunction
and compromised organization of regulatory machinery suggests a
strong role of genomic organization in pathology. Although the
nucleus is not subdivided by membrane-bound compartments,
the regulatory machinery for transcription, replication, and repair
are architecturally organized in subnuclear domains with specific
functions. This compartmentalization supports a direct relationship
between nuclear structure and function that is dynamically
regulated in a physiologically responsive manner. Prominent
domains within the nucleus, such as the nucleolus and hetero-
chromatin, were identified long before their functions were
elucidated. Other architectural components of the nucleus, including
the nuclear matrix, nuclear lamina, Cajal bodies, speckles, and the
Barr body were identified once advances in microscopy became
available and molecular approaches were introduced [Mehta et al.,
2007; Hemmerich et al., 2011; Zhu and Brangwynne, 2015].

During mitosis, the genome is organized into easily recognized
X-shaped chromosomes; however, this configuration does not
persist during the G1, S, and G2 phases of the cell cycle. During

interphase, the genome, like the other nuclear domains, is organized
in discrete bodies. Chromosomes relax into nuclear domains that are
referred to as chromosome territories (CTs; Fig. 1A), [Zorn et al.,
1976; Stack et al., 1977; Zorn et al., 1979; Manuelidis, 1985;
Schardin et al., 1985; Cremer et al., 1981, 2006; Lichter et al., 1988;
Cremer and Cremer, 2001]. This realization that genomic structure
and function are dynamic and highly integrated has been driven
by technologies that include fluorescence in situ hybridization
(FISH, [Solovei and Cremer, 2010]) and, more recently, chromatin
conformation capture (3C) techniques [de Wit and de Laat, 2012;
Barutcu et al., 2015]. Here, we provide an overview of microscopic
and molecular techniques that have advanced understanding of
nuclear organization and a synopsis of the role of CTs in genomic
organization and expression.

ORIGINS AND REESTABLISHMENT OF THE
CHROMOSOME TERRITORY PARADIGM

The existence of CTs was first suggested by Theodor Boveri in 1885
and was supported by Carl Rabl in 1909 [Cremer and Cremer,
2010]. These early observations and predictions of genome
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compartmentalization in the interphase nucleus were superseded
when electron microscopy became available and evidence of
chromosome intermingling during interphase was directly ob-
served. This led to the “spaghetti” model of the interphase nucleus
that persisted for decades—in which chromatin fibers from
different chromosomes are interwoven. It was not until the late
1970s that the concept of chromosome territories began to
re-emerge due to compelling evidence from several lines of inquiry
[Cremer and Cremer, 2010]. One such line utilized a laser
microbeam to inflict DNA damage in a small region within the
nucleus and then determine whether the damaged DNA was
distributed throughout the genome or was localized to specific
chromosomes. Investigators found that the damage was confined
to just a few chromosomes, and that the reverse experiment, in
which laser-UV-microirradiation was used to cause damage to a
small portion of the metaphase plate produced daughter-cell nuclei
with mirror-image DNA-damage visualized in interphase; a
finding that strongly supports the CT model [Zorn et al., 1976,
1979]. The development of chromosome paints that consist of
fluorescent-dye labeled chromosome-specific probes enabled
direct visualization of individual chromosomes in interphase
nuclei [Manuelidis, 1985; Schardin et al., 1985; Lichter et al.,
1988]. These findings were further corroborated by experiments in

which fluorescent nucleotide analogs were used to uniformly
pulse-label replicating DNA. After several rounds of replication/
independent assortment of chromosomes, individual CTs could be
visualized in live cells [Zink and Cremer, 1998; Visser and Aten,
1999]. Within these CT, subdomains were proposed to occur via
6–12 chromatin loops of approximately 50–200 kb arranged in a
rosette pattern composed of approximately 1Mbp of DNA [Jackson
and Pombo, 1998; Ma et al., 1998; Berezney, 2002]. The data
obtained using chromatin capture techniques has extended this
concept to include more precise characterization of the intra-
chromosomal interactions defined by so-called topologically
associating domains (TADs) that represent discrete domains of
relatively high DNA-contact frequencies [Dekker et al., 2013;
Barutcu et al., 2015]. Chromosome organization in CTs during
interphase is now widely accepted in the scientific community.

FISH AND CHROMATIN CONFORMATION
CAPTURE—COMPLEMENTARY APPROACHES
FOR CHROMOSOME TERRITORY DELINEATION

Currently, two main techniques are used to study chromosome
territory organization: fluorescence in situ hybridization (FISH) and

Fig. 1. A spectrumof increasingly complex chromatin conformations impacting gene expression.Whereasmitotic chromosomes are condensed into broadly recognized X-shaped
entities, during interphase they relax and occupy distinct domainswithin the nucleus termed chromosome territories (CT). Seven CTs labeledwithfluorescence in situ hybridization
are shown (A).Within chromosomes, the configuration is coordinatedwith gene expression. Looping of regulatory elementswithin individual genes is essential for their expression
mediated through transcription factor binding and CTCF (B). Moreover, actively expressed genes cluster in what are known as active chromatin hubs (C). Genes have also been
shown to extend out of their main CT bodies in order to form interchromosomal interactions with coregulated genes (D). These interactions are mediated in part through
interactions with other nuclear structures, such as the nucleoli and the nuclear lamina via lamina associated domains (LADs) or nucleolar associated domains (NADs, D–E).
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chromatin conformation capture. FISH is a microscopic method to
visualize specific DNA or RNA sequences within the nucleus by
hybridizing complementary fluorescent-dye labeled DNA or RNA
probes. Chromatin conformation capture comprises several related
molecular biology techniques that involve crosslinking nuclei to
“capture” intra- and inter-chromosomal interactions, fragmenting
DNA with restriction enzymes, ligating the interacting fragments,
purifying the DNA, andfinally identifying the captured sequences by
deep-sequencing, microarray analysis, or PCR.

FISH has been used extensively to identify chromosomal
aberrations (e.g., translocations or deletions), and characterize
CTs, and other nuclear bodies and microenvironments. These
analyses are enabled by an increasingly sophisticated array of 3D
computational image-analysis tools, such as NEMO [Iannuccelli
et al., 2010], eFISHent [Fritz et al., 2014b], and TANGO [Ollion et al.,
2013]. Chromosome conformation capture strategies include a
compendium of techniques that include 3C, 4C, 5C, Hi-C, and ChIA-
PET [Barutcu et al., 2015]. These methods provide a global snapshot
of chromosome interactions. Used together, FISH and chromosome
conformation capture techniques can complement the limitations
inherent to each strategy on its own; they can be used to validate
each other for CT analyses. Table I summarizes the strengths and
limitations of FISH microscopy and chromosome conformation
capture strategies for analyzing CTs.

A SPECTRUM OF INCREASINGLY COMPLEX
CHROMATIN CONFORMATIONS IMPACTING GENE
EXPRESSION

The configuration of chromatin is coincident with the coordinated
expression of genes under different physiological conditions, such as
cell cycle, differentiation state, and disease status. This has been
shown to be critical for the transcription of individual genes that rely
on enhancer-promoter interactions that may cover over 100 kb of
linear genomic distance (Fig. 1B) [Kadauke and Blobel, 2009;
Krivega and Dean, 2012]. Examples of this include the b-globin
locus [Carter et al., 2002; Tolhuis et al., 2002; Palstra et al., 2003],
IFNG [Eivazova and Aune, 2004], MHC class II [Majumder and Boss,
2010], and CFTR [Gheldof et al., 2010] genes. Upon transcription,
these genes and their respective enhancers are in close proximity.
This conformation, termed active chromatin hubs (ACHs), is
mediated through the binding of transcription factors, and is only
present when these genes are expressed. In hematopoietic stem cells
(HSCs), the transcription factor RunxI is required for the interaction
between the CD34 gene promoter and its downstream regulatory
element [Levantini et al., 2011]. Transcription factor-mediated
chromatin looping was demonstrated in erythroid cells. In order to
adopt an ACH formation, the Beta-globin gene and its locus of
control require specific transcription factors, including EKLF1 and
GATA1 [Drissen et al., 2004]. Additionally, the global chromatin
organizer and transcription factor, SATB1was also shown to form an
ACH in the Rag1 and Rag2 genes in thermocyte development [Hao
et al., 2015].

Physical proximity is not only essential for the expression of
individual genes; multiple genes that are coexpressed may

congregate into ACHs when active (Fig. 1C) [Osborne et al.,
2004a; Spilianakis et al., 2005; Osborne et al., 2007]. For example,
the active alpha-globin genes loop into an ACH with several nearby
housekeeping genes within a 130 kb domain [Zhou et al., 2006].
These enhancer-promoter and local DNA clusters might represent
what are now recognized as topologically associating domains
(TADs), defined as preferential interactions that occur over
approximately 100 kb to 1Mbp genomic sequence lengths
[Lieberman-Aiden et al., 2009; Dekker et al., 2013; Barutcu et al.,
2015]. Although chromosomal contacts within TADs are more
prevalent, interactions occur between genes that are located up to
�40mbp apart in different TADs. In murine erythroid cells, the
highly transcribed hemoglobin beta gene, Hbb-b1, and other active
genes distally located in sequence, colocalize at shared transcription
factories [Osborne et al., 2004b]. Clusters of active genes in open
chromatin (A-type compartments) or inactive genes in closed
chromatin (B-type compartments) were later established using 3C
assays [Dekker, 2014; Cremer et al., 2015].

This clustered chromatin organization is created through
boundaries between neighboring genes or gene clusters with
different expression programs and/or nearby heterochromatic
microenvironments [Giles et al., 2010]. Specifically, certain DNA
sequences and protein factors may act as insulators, providing a
barrier to block the inappropriate spreading of heterochromatin or
contact with enhancers that belong to other genes. One such site,
discovered via DNase-sensitivity analysis, is known as 52HS4; it
marks the separation between the beta-globin genes and an
upstream heterochromatic region [Chung et al., 1993; Chung
et al., 1997]. A well-known factor involved in this insulator function
is known as CCCTC-binding factor (CTCF). One function of CTCF is to
prevent the inappropriate enhancer activation of genes. For
example, CTCF is critical for monoallelic expression in imprinting.
CTCF binds to the imprinted control region (ICR) of the maternal
allele, thus preventing distal enhancers from activating Igf2. In
contrast the paternal-allele ICR DNA is methylated, thereby
occluding CTCF and allowing the enhancer to activate Igf2
transcription [Bell and Felsenfeld, 2000; Hark et al., 2000; Kanduri
et al., 2000]. Genome-wide, CTCF and cohesin complexes have been
shown to demarcate TAD boundaries [Phillips-Cremins and Corces,
2013; Seitan et al., 2013; Sofueva et al., 2013; Zuin et al., 2014] and
are involved in the evolutionary conservation and alteration of TADs
[Vietri Rudan et al., 2015].

Chromatin alterations can be visualized microscopically. For
example, actively expressed genes project out of the CT in chromatin
loops (Fig. 1D), but remain inside their respective CTs when
expression is not in progress [Volpi et al., 2000;Williams et al., 2002;
Chambeyron and Bickmore, 2004]. This has been demonstrated for
the major histocompatibility complex on CT6 [Volpi et al., 2000],
HOX genes on CT11 [Chambeyron and Bickmore, 2004], and the
epidermal differentiation complex on CT1 [Mahy et al., 2002a;
Williams et al., 2002]. On a broader level, it was suggested that
actively expressed genes aremore often found on the periphery of CT
[Zirbel et al., 1993]. However, other investigations have demon-
strated that both active and inactive genes are found at the CT
boundary [Kurz et al., 1996; Clemson et al., 2006] and that genes are
evenly distributed throughout the CT regardless of their expression
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level [Mahy et al., 2002b; Kupper et al., 2007]. Moreover,
re-localization of the HOX genes to the CT periphery is not required
upon their activation in different cell types [Morey et al., 2007,
2009]. More recently, with the adoption of chromatin capture
techniques, it was shown that more active domains are more likely to
be found on the periphery of CTs [Nagano et al., 2013], offering
credence to an early hypothesis that lost favor before the use of
molecular strategies.

The presence of active domains at CT boundaries suggests the
possibility that specific coregulated genes may interact at CT
interfaces. Interchromosomal interactions have been detected
between Myc and Igh [Osborne et al., 2007] and human erythroid-
specific genes [Brown et al., 2008]. Interestingly, Spilianakis and
colleagues also found that, not only do the regulatory regions of the
Locus Control Region (LCR) and TH2 interact on chromosome 11, but
they also form an interchromosomal cluster with the IFN-g gene on
chromosome 10 [Spilianakis et al., 2005].

Colocalization has also been shown to preserve gene inactivity.
For example, downregulation of the lamin b receptor mediates
clustering of olfactory genes at heterochromatic foci [Clowney et al.,
2012]. The localization of heterochromatin at specific nuclear
microenvironments such as the nuclear periphery, perinucleolar
regions [Nemeth et al., 2010; van Koningsbruggen et al., 2010], and
within polycomb bodies in drosophila [Tolhuis et al., 2011] results in
the clustering of inactive genes [Guelen et al., 2008].

CHROMOSOME TERRITORY NEIGHBORHOODS, A
NETWORK OF INTERACTING CHROMOSOMES

In addition to specific interchromosomal interactions between
genes, heterologous CT-neighborhood arrangements have been
established [Nagele et al., 1995; Bolzer et al., 2005]. This suggests
that the colocalization of genes between chromosomes may be
established not only by genes projecting out of their CT on chromatin

TABLE I. FISH and Chromatin Conformation Capture Techniques for Analyzing Chromosome Territories

FISH Chromatin conformation capture

Throughput Slow, low throughput: microscopy and image
analysis are time consuming.

� FISH is ideal for analysis of individual CTs.

Hi-C is a relatively complex procedure; however, results
represent the average of millions of cells and contacts
across the entire genome.

Process
considerations

Target sequence information required. With the
most advanced equipment, it is theoretically possible
to use five fluorescently labeled probes simultaneously;
however, most studies query only two or three probes
at a time to avoid technical difficulties.

Hi-C and ChIA-PET do not require target sequence information;
both techniques provide genome-wide chromosome-contact
frequency data. Other chromatin conformation capture techniques
(3C, 4C, 5C) do require target sequence information.

Conventional FISH is in fixed nuclei (data are from individual
cells at the time they were prepared for microscopy).

� Stage specific markers can be used to identify cells at
different points in the cell cycle.

� Live-cell FISH has been achieved using catalytically inactive
CRISPR/cas9 labeled with EGFP and tiled sgRNAs
[Chen et al., 2013].

Crosslinking fixes molecular interactions within nuclei (Data
represent the average frequency of chromosome interactions
in a cell population at the time nuclei were crosslinked).

� Cell populations may be heterogeneous.
� Values in Hi-C are relative rather than absolute.
� Particular cell types and/or cell-cycle stage cells can be enriched

via sorting prior to analysis.
� Single-cell Hi-C averages interactions from both somatic CT

homologs [Nagano et al., 2013].

Denaturation may alter nuclear structure.
� It is important to verify that nuclear structure remains

intact after processing. This can be done by visualizing
colocalization of EdU before and after the FISH procedure
[Fritz et al., 2014b].

Chromatin decondensation in digestion and SDS steps could result
in indirect ligation between fragments located hundreds of
nanometers apart in nuclei [Gavrilov et al., 2013;
Williamson et al., 2014]. Interactions in different regions of the genome
may not be captured uniformly since different proteins have different
binding affinities [Williamson et al., 2014].

� May not be a concern in relatively low-resolution Hi-C studies.

Adequacy of hybridization efficiency is a concern.
� Evaluate by labeling chromosomes in spontaneous

metaphase cells using CT paints.

Repetitive sequences limit accurate mapping to chromosomes—data
on interactions in these areas is typically not available.

Position
information

Ideal for determining the position of individual CTs in the
nucleus and/or relative to nuclear compartments.

� Specificity of antibody to detect nuclear compartment
should be determined.

Does not provide information on position relative to the nuclear
periphery or other nuclear structures.

� ChIA-PET can detect contacts mediated by protein components;
however, genes may functionally and cooperatively associate with a
third nuclear structure, without interacting at a molecular
level—these contacts would not be detectable (e.g., associations
localized to opposite sides of a nucleolus).

Data analysis Analysis programs measure volumes of nuclei, CT or other
cellular domains; overlap/colocalization volumes; distances
between CT, genes and/or domains; and the degree of
irregularity in shape.

Requires sophisticated analysis of next generation sequencing, but
provides genome-wide specific DNA interactions.

� Appropriate normalization is crucial.

Resolution Conventional microscopy resolution is constrained by the
diffraction limit of light.

� Super resolution microscopy [Markaki et al., 2012;
Lakadamyali and Cosma, 2015] can increase resolution
up to 20 fold over conventional microscopy
[Long et al., 2014].

Resolution is dependent on choice of restriction enzyme (4 or
6 bp cutter).

� In Hi-C, the effective resolution for cis interactions will
exceed that of trans interactions with an equal number
of sequencing reads. [Belton et al., 2012].

� Capture Hi-C can increase the effective resolution
[Barutcu et al., 2015].
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loops, but also through repositioning of entire CTs. Preferential
interchromosomal associations measured between pairwise heter-
ologous CTs suggest an overall nonrandom organization of CTs with
respect to each other [Kuroda et al., 2004; Bolzer et al., 2005; Mayer
et al., 2005; Brianna Caddle et al., 2007; Khalil et al., 2007; Marella
et al., 2009a,c; Zeitz et al., 2009]. This nonrandom organization of
chromosomes in neighborhoods is relevant for the establishment of
cellular identity. As cells differentiate, entire CTs are repositioned
[Kuroda et al., 2004; Marella et al., 2009c] and individual genes
within CTs exhibit altered interchromosomal interactions; the
pluripotency-related gene Nanog is an example [Apostolou et al.,
2013]. Subsequently, unique CT interaction profiles are found in
different cell types and tissue lineages [Tanabe et al., 2002b; Parada
et al., 2004; Mayer et al., 2005; Marella et al., 2009a; Zeitz et al.,
2009]. These profiles, in turn, suggest that genomic organization
could explain the high frequency of particular translocations
prevalent in different cancer types (discussed below).

Although seminal, microscopic studies of interchromosomal
organization have limitations. First, the intranuclear locations of
CTs are probable rather than absolute, and therefore efforts to map
CTs are challenging. One such limitation is in the determination of
the CT positions. The majority of studies that utilize FISH to
determine CT organization have primarily focused on their gravity
centers, thus interactions at the interfaces of CTs are not captured.
This is significant because studies that have focused on CT-border
interactions reveal high variability in the distance between CT-
centers of interacting chromosomes [Fritz et al., 2014b; Pliss et al.,
2014]. Furthermore, due to technical limitations, most studies have
analyzed only three chromosomes per nucleus. Recent investiga-
tions, however, using a variation on FISH known as reFISH to
sequentially label up to nine CT, have determined specific CT
neighborhoods for each individual homolog within the nucleus
[Fritz et al., 2014b; Pliss et al., 2014]. Regardless, technical
limitations in microscopic studies restrict their ability to provide a
full understanding of the complex nature of nuclear organization.
Hi-C, on the contrary, can provide a more comprehensive view of
intra- and inter-chromosomal interactions. However, the data
represent a snapshot in time and the average of millions of
interactions within a population. In a heterogeneous population, Hi-
C cannot differentiate stable CT interactions in a subpopulation of
cells from a series of dynamic interactions that occur in most cells at
different times. The probable, yet variable, nature of interchromo-
somal CT interactions is likely due to the fact that the genome as a
whole is far more complex than any particular gene family or
network of gene regulation.

RADIAL NUCLEAR POSITIONING, CENTERING THE
GENOME

Genome organization is a fundamental epigenetic mediator of gene
expression [Berezney, 2002; Stein, 2003, 2008; Misteli, 2004;
Berezney et al., 2005; Meaburn and Misteli, 2007; Misteli, 2007;
Kumaran et al., 2008; Cremer and Cremer, 2010; Bickmore, 2013]. It
is generally accepted that the three dimensional positions of CTs are
nonrandom relative to the nuclear periphery. Initial studies indicated

that CT positioning correlates with gene activity, with higher gene
activity levels associated with more interior CT positioning [Boyle
et al., 2001; Kreth et al., 2004]. The inactive-X CT is a clear example;
it is located closer to the nuclear periphery than its active counterpart
[Dyer et al., 1989]. Later studies suggested that gene density
influences the nonrandom radial organization of somatic CTs [Boyle
et al., 2001]. Because gene-dense chromosomes generally exhibit
higher levels of transcription than gene-poor chromosomes
[Versteeg et al., 2003], gene activity may be the underlying basis
for the radial positioning of the genome. Interestingly, this paradigm
holds true not just for entire CTs, but also for individual genes
and gene complexes within chromosomes; expressed alleles are
generally found further from the nuclear periphery than alleles
that are not expressed [Dietzel et al., 2004; Pickersgill et al., 2006;
Fraser and Bickmore, 2007; Finlan et al., 2008; Reddy et al., 2008;
Takizawa et al., 2008; Fedorova and Zink, 2009; Therizols et al.,
2014]. This could result from the preferential localization of tightly
packed chromatin at the nuclear periphery [Busch, 1966; Belmont
et al., 1993]. While tethering to the nuclear lamina results in
repression of transcription [Amendola and van Steensel, 2014], some
genes do not display this phenomenon when recruited to the nuclear
periphery [Kumaran and Spector, 2008]. It is important to note that
transcription can and does occur near the nuclear periphery and
conversely, inactive genes are sometimes located in the nuclear
interior [Misteli, 2013; Cremer et al., 2015].

Another possible principle governing nuclear organization is born
out by studies suggesting that chromosome size is the major
determinant of the nonrandom radial positioning of CTs. These
investigations have found that longer chromosomes are located
closer to the nuclear periphery [Sun et al., 2000]. Efforts to reconcile
the findings from these studies point to cell cycle and nuclear shape
as possible effectors. For example, CT are repositioned in cycling
fibroblasts compared to cells in G0 [Mehta et al., 2010]. Other studies
have attributed differences in nuclear shape between cell types as a
key determinant of whether chromosome size or gene densities drive
radial CT positioning [Bolzer et al., 2005]. CT size–radial position
relationships are more prevalent in ellipsoidal fibroblast nuclei,
whereas studies in more spherical lymphocyte nuclei find a higher
correlation between gene density and radial arrangement which is
conserved across evolution [Tanabe et al., 2002a, 2005].

INTERACTIONS BETWEEN CHROMOSOME
TERRITORIES AND OTHER NUCLEAR
COMPARTMENTS

A more mechanistic perspective examines nonrandom organization
of CTs established through functional interactions with other nuclear
structures. For example, the nuclear lamina that lines the nuclear
envelope have been proposed to have a major role in organizing the
genome [Filesi et al., 2005; Goldman et al., 2005]. Lamina-associated
domains (LADs) within chromosomes tether CTs to the nuclear
periphery (Fig. 1D–E) and are foundwith greater frequency in CTs that
are peripherally positioned [Bridger et al., 2007; Guelen et al., 2008].
Consistent with observations about gene activity and CT radial
positioning, LADs are typically found in repressed heterochromatin
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microenvironments. The condensation of DNA into tight hetero-
chromatin substantially hinders access to DNA by nuclear machinery
for transcription, replication, and DNA/chromosome modification.
Some studies have suggested that recruitment to a peripheral
heterochromatic microenvironment may have functional implica-
tions for replication [Li et al., 2001], transcription [Finlan et al., 2008;
Kumaran et al., 2008; Reddy et al., 2008] and genome stability [Oza
andPeterson, 2010]. These ideas are supported by the observation that
disruption of the nuclear lamina in patients with progeria results in
perturbation of telomere length [Gonzalez-Suarez et al., 2009], radial
CT positioning [Mehta et al., 2011], and the condensation and
compartmentalization of peripheral heterochromatin [Goldman et al.,
2004; Nikolova et al., 2004; Taimen et al., 2009].

While the nuclear lamina is thought to exert its largest influence
on CTs near the nuclear periphery, other nuclear bodies and
microenvironments mediate genomic organization further inside
the nucleus. For example, the interchromosomal interactions
between the human erythroid-specific genes colocalize at nuclear
speckles [Brown et al., 2008]. However, one of the most extensively
studied prominent domains impacting nuclear organization is the
nucleolus. They are formed by the congregation of the acrocentric
chromosomes 13, 14, 15, 21, and 22, specifically their nucleolar
organizer regions (NORs), which are comprised of tandem arrays of
ribosomal RNA (rRNA) genes [Carmo-Fonseca et al., 2000; Prieto
and McStay, 2005]. Although some NORs remain associated with
components of the RNA polymerase I transcriptional machinery
through mitosis (so-called competent NORs), others are not
“bookmarked” and rRNA transcription factors assemble and
disassemble with each cell cycle [Smirnov et al., 2006; Schlesinger
et al., 2009]. During interphase, competent NORs tend to be located
closer to nucleoli than their non-competent counterparts
[Kalmarova et al., 2007]; however, both types of NOR-bearing
CTs are frequently associated with nucleoli [Sullivan et al., 2001;
Kalmarova et al., 2007]. Detailed biochemical and DNA-sequence
analysis of nucleoli indicates that not only the acrocentric NOR-
bearing chromosomes interact with nucleoli, but all chromosomes
have nucleolar-associating domains (NADs). These NADs share
sequence similarity with LADs and localize to the perinucleolar
heterochromatin (Fig. 1D–E) [Nemeth et al., 2010].

Despite their substantial impact on the nuclear landscape, the
number of nucleoli in any given nucleus varies from one to five.
As a result, NOR-bearing CTs display heterogeneous nucleolar-
interaction profiles within a population of cells. In nuclei with
multiple nucleoli, a dominant nucleolus hasmore contributing NOR-
bearing CTs than the others. Furthermore, even nuclei with the same
number of nucleoli may exhibit different patterns of associationwith
NOR-bearing CT. For example, a different complement of NOR-
bearing CT are found to associate with each nucleolus in cells that
contain only two nucleoli. This association of CTs with nucleoli at
the nuclear interior, may help to explain the correlation between
short sequence length and interior radial positioning [Bolzer et al.,
2005; Raska et al., 2006; Heride et al., 2010]. The fact that shorter
NOR-bearing CT are preferentially located further from the nuclear
periphery than their longer NOR-bearing counterparts [Pliss et al.,
2014] suggests that CT size outweighs the influence of nucleolar
association in determining radial position.

CHROMOSOME TERRITORY ORGANIZATION IN THE
CELL CYCLE

As cell exits mitosis, chromosomes de-compact and gene expression
resumes—ostensibly recapitulating the program of the parent cells to
maintain their cellular lineage. This is accomplished in part through
a process known as bookmarking, in which key transcription factors
are retained on chromosomes through mitosis [Delcuve et al., 2008].
Following mitotic de-compaction, bookmarking enables the rapid
resumption of cell-specific gene expression or continued genes
repression in subsequent generations [Kadauke and Blobel, 2013].
An interesting example of this is the residency of transcription
factors at rDNA. In mesenchymal stem cells (MSCs), which are not
lineage committed, Myc bookmarking of rDNA promotes rRNA
expression in progeny cells. This bookmarking could enable
immediate post-mitosis resumption of gene expression that is
needed to fuel the rapid cell cycle progression characteristic ofMSCs.
However, in cells derived from MSCs, that have a longer cell cycle,
various transcription factors act to reduce rRNA expression; these
include Runx1 in osteoblasts, MyoD in myoblasts, and C/EBP in
adipocytes [Zaidi et al., 2010].

Following mitosis, in early G1, in vivo-labeled chromosome
domains are mobile relative to the nucleus and each other [Csink and
Henikoff, 1998; Lucas and Cervantes, 2002; Walter et al.,
2003] whereas during the rest of the cell cycle, the large-scale
arrangement of chromatin in the cell nucleus exhibits a degree of
stability [Shelby et al., 1996; Abney et al., 1997; Zink and Cremer,
1998; Bornfleth et al., 1999; Chubb et al., 2002; Lucas and Cervantes,
2002; Gerlich et al., 2003]. This observation suggests that the
breakdown of the nuclear envelope and its reassembly at the end of
mitosis could provide an opportunity for remodeling of nuclear
organization in subsequent generations. Outside of mitosis, overall
CTmorphologies were demonstrated to bemaintained for up to 4 h in
the cell cycle [Edelmann et al., 2001; Muller et al., 2010]; however,
alterations were detected in internal CT organization [Muller et al.,
2010]. CT morphology was found to be altered, however, in studies
that examined CTs in G1 compared to S-phase nuclei [Sehgal et al.,
2014]. Along with this altered CT morphology, cell-type specific
alterations in the interchromosomal organization of specific CT were
demonstrated [Fritz et al., 2014a].

On a smaller scale, chromatin remodeling has been shown to
control progression through the cell cycle by regulating tran-
scription of essential cell-cycle genes [Cao et al., 1997; Vignali
et al., 2000] and DNA replication. For example, during S phase,
loosening of chromatin structure enables the replication machi-
nery to access the DNA [Raynaud et al., 2014]. At a global level, as
cells progress from early S to mitosis, chromatin becomes
increasingly condensed and less sensitive to DNase I [Pfeffer
et al., 1991]. Using Hi-C on synchronized HeLa cells, it was
demonstrated that the intrachromosomal TADs within specific CTs
are largely, but not entirely, maintained across the cell cycle
[Naumova et al., 2013]. This work also determined that TADs are
broken down in mitosis and are re-established in early G1
[Naumova et al., 2013]. However, the degree to which the
organization within specific TADs is altered during interphase
from early G1 to late G2 remains unclear.
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CHROMOSOME TERRITORY ORGANIZATION IN
CANCER

Changes in nuclear structure have long been used as a major
diagnostic tool to detect cancer [Zink et al., 2004; Zaidi et al., 2007].
Cancer nuclei are generally larger and more irregularly shaped than
nuclei in healthy cells [Zink et al., 2004]; nuclear compartmentaliza-
tion is also altered. For example, some cancers are characterized by an
increase in the numbers and sizes of nucleoli, possibly as a result of an
increased requirement for protein synthesis [Derenzini et al., 2000;
Maggi and Weber, 2005]. Partial loss of heterochromatin compart-
mentalization is another characteristic change [Zink et al., 2004].
Although it is known that nuclear architecture is altered in cancer, less
is known about the concomitant changes in CT organization. Studies
of nuclear organization in cancer are complicated by the fact that
comparisons are often made between cells from different origins and
the karyotypes of each cancer cell type are highly variable—karyotype
heterogeneity within a population of cells further complicates
analyses. Even in cells with similar karyotypes, cell-to-cell variability
in CT organization has been demonstrated using microscopy and
single-cell Hi-C [Nagano et al., 2013]. Finally, even single-cell Hi-C,
cannot currently distinguish the data from individual somatic
chromosomes; data represent an average of both CT homologs
[Nagano et al., 2013].When determining the organization of CT this is
of particular importance. For example, in chromosomes that are
involved in translocations, altered contact frequencies could be found
within the translocated CT, the non-translocated CT, or distributed
between both homologs of the CT.

Interchromosomal interactions have been suggested to play a role
in cancer progression. Cell-type differences in CT organization may
present an explanation for the high frequency of specific trans-
locations that occur in the progression of several different cancers.
Increased translocation frequency has been determined between
specific CTs that are in closer proximity [Parada et al., 2002; Roix
et al., 2003; Brianna Caddle et al., 2007; Soutoglou et al., 2007; Folle,
2008] and have higher degrees of intermingling [Branco and Pombo,
2006]. Within cancer nuclei, it was demonstrated that translocated
CT regions retain the preferential interaction partners they had
before the translocation [Parada et al., 2002]. A wide-scale alteration
in interactions between non-translocated CTs was determined in
MCF10A cells versus their metastatic counterpart MCF10CA1a cells
[Fritz et al., 2014b]. Interestingly, the inactive X CT was found to
have fewer interchromosomal interactions in MCF10A, but not in
MCF10CA1a cells. This increase in interchromosomal interactions
was coincident with increased CT volume and global gene
expression within the X chromosome [Fritz et al., 2014b]. Changes
in CT interaction profiles extend to the gene level in cancer; it was
shown that the specific genes that participate in interchromosomal
interactions are different in breast cancer versus normal breast cells
[Zeitz et al., 2013].

CONCLUSION

Although progress has been made in understanding how CTs
influence and/or respond to nuclear organization, further work to

fully elucidate the rules that govern the functional relationships
between genomic organization, and genetic and epigenetic
regulation in the context of nuclear microenvironments is
needed. Due to the complexity of genome-wide regulatory
networks, high-throughput biochemical techniques will be vital
for illuminating these functional relationships. The dynamic
nature of structural and functional relationships across the cell
cycle (e.g., from mitotic bookmarking of genes with their
respective regulatory proteins to domain assembly during
interphase) as well as their perturbation in disease also require
further study. Architectural signatures that reveal specificity of
localization and/or colocalization for regulatory domains that
may be altered could represent targets for the detection and
treatment of disease states. Microscopy remains an important
approach for high-throughput genome-wide studies; used in
combination with emerging molecular chromatin conformation
capture techniques, and ever more sophisticated and powerful
analysis methods, it is likely that ongoing investigation will yield
ever more precise and detailed information on the role of CT
organization in biology.
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